深圳市捷宇投资发展有限公司

深圳市捷宇投资发展有限公司

当前位置: 主页 > 电子产品 >

2019年人工智能对高性能计算的十种影响 - 人工智

时间:2019-04-15 10:00来源:未知 作者:admin 点击:
采用人工智能的工作负载如今变得无处不在,其中有的工作负载在世界上运行最快的计算机上运行,从而改进高性能计算(HPC)。随着组织规划未来的发展,需要解决人工智能工作负载

采用人工智能的工作负载如今变得无处不在,其中有的工作负载在世界上运行最快的计算机上运行,从而改进高性能计算(HPC)。随着组织规划未来的发展,需要解决人工智能工作负载的编程、软件需求、硬件需求和培训需求等问题。在2019年,行业专家和人工智能专家将继续创造创新的解决方案。

以下是人工智能在2019年对高性能计算产生最大影响的十种方式:

1. 张量(Tensors):人工智能计算的通用语言

向量代数的应用催生出为向量计算设计的计算机。Cray公司早期推出的超级计算机就是一种向量超级计算机,它将应用程序表达为向量和矩阵代数问题,这反过来又加强了计算机的设计,以确保向量计算的快速运行。多年来,这种强化循环强烈定义了高性能计算(HPC)。张量代数可以被接受为广义矩阵代数,因此它是超级计算机数学能力的自然演化,而不是一场革命。任何支持矩阵运算的机器都可以进行张量运算。如今的CPU的用户采用编译器,加速采用Pythons,加强库和优化框架的支持,获得对向量和张量的高性能支持,所有这些都允许软件开发人员使用高性能环境中的向量和张量。

张量技术在硬件、软件和人们的思想上都在高性能计算应用中留下了深刻的印象。

2.语言:高级程序设计

Fortran程序在消耗周期方面占据了高性能计算的主导地位,C和C ++程序几乎耗尽了高性能计算中的其他资源。通常通过C接口、扩展和库来支持加速器周期。尝试使用新语言来破坏这种情况已经失败,因为现有语言具有适合构成高性能计算的应用程序的用户、代码和支持。

人工智能为新用户带来了新的需求,这将扩展与高性能计算相关的语言,并不会改变大多数使用Fortran代码的物理学家的活动,但使用MATLAB和Python的数据科学家需要根据他们的需求量身定制解决方案。

Python以及其他生产力语言和框架似乎将成为越来越多的高性能计算(HPC)周期的主人。他们的实际数字运算程序仍将用C/C ++/Fortran编写,但人工智能程序员既不会知道,也不会关心它。

3.以不同方式思考:通过利用机会重新思考方法来替换遗留代码

高性能计算(HPC)是一种传统技术,人工智能相对来说是一种新技术。显然,随着人工智能的成熟,它将创造自己需要支持的重要遗产。就目前而言,当这两种技术结合时,它将鼓励有关重新实现遗留代码的对话,这在某些情况下可能已经过期。其借口可能是为代码添加一些人工智能功能,但现实将是一些有益的努力以及一些严重的时间浪费。 (责任编辑:皇冠)

------分隔线----------------------------
栏目列表
推荐内容